A COUPLED SCHRODINGER EQUATIONS WITH
TIME-OSCILLATING NONLINEARITY

X. CARVAJAL, P. GAMBOA AND M. PANTHEE

ABSTRACT. This paper is concerned with the coupled system of supercritical nonlin-
ear Schrodinger equations, which has applications in many physical problems, espe-

cially in nonlinear optics,
due + Au+ h(wt)([u* + BluP~ o u = 0, (0.1)
vy + Av + z(wt) (|[v]?P + BlvP~Hu[PT v = 0, .
where h and z are periodic functions. We prove that, for given initial data ¢,¢ €

H'(R"), as |w| — oo, the solution (uy,v,) converges to the solution (U, V) of the

value problem associated to.
iUy + AU + I(h)(|U PP + BlUPH VYU = 0, (0.2)
Vi + AV + I(2)([V? + BIVIP-HU PV = 0, '

with the same initial data, where I(g) is the average of the periodic function g.
Moreover, if the solution (U, V) is global and bounded, then we prove that the solution

(uy, vy) is also global provided as |w| — oo.

1. INTRODUCTION

In this work, we consider the following initial value problem (IVP) for two coupled

nonlinear Schrodinger (NLS) equations:

iug + Au+ h(wt)(|u® + BlufP~HoP™)u =0
v + Av + z(wt) (Jo?? + BlvlP~HulPt)v = 0 (1.1)

u(z, to) = () v(z,to) =Y (x),
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2 X. CARVAJAL, P. GAMBOA AND M. PANTHEE

in R, where

I1<p< (1.2)

(n—2)*

to,w € Rand g, : R" x R — C, and h, z € C(R,R) are periodic functions with
period 7 > 0. Moreover, 3 is real positive constant. To simplify the analysis, we

translate the initial time ¢ to 0 and consider the following IVP

iy + Au+ 01 (w(t + to) ([uf* + Bluf~ o u =0
v + Av + O (w(t + to)(Jv][* + BlofPHulf v =0 (1.3)
u(@,0) =p(x)  v(z,0) =)

For h = z = 1 this kind of problem arises as a model for propagation of polarized
laser beams in birefringent Kerr medium in nonlinear optics (see, for example, [2, 8,
10, 12, 16, 15] and the references therein for a complete discussion of the physics of
the problem). The two functions w and v are the components of the slowly varying
envelope of the electrical field, ¢ is the distance in the direction of propagation, x are
orthogonal variables and A is the diffraction operator. The case n = 1 corresponds
to propagation in a planar geometry, n = 2 is the propagation in a bulk medium and
n = 3 is the propagation of pulses in a bulk medium with time dispersion. The focusing
nonlinear terms in (1.1) describes the dependence of the refraction index of material
on the electric field intensity and the birefringence effects. The parameter 5 > 0 has
to be interpreted as the birefringence intensity and describes the coupling between the
two components of the electric-field envelope. This article is motivated by the papers
Abdullaev et al. [1] and Konotop and Pacciani [9] where the authors investigate the
effect of a time-oscillating term in factor of the nonlinear Schrodinger equations and
Carvajal, Panthee and Scialom [3] where the authors considered a critical Korteweg-de
Vries (KdV) equation.

We consider the system (1.1) when h =z =1, to = 0 i.e.

iug + Au+ (|u]? + BlulP~ L o]P™)u =0
ivy + Av 4 (Jo]2 + BloP~Hu[PT v = 0 (1.4)

u(z,to) = () v(w,to) = P(v),

sistrans
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COUPLED SCHRODINGER SYSTEM 3

tthe system (1.4), admits the mass and the energy conservation in the space H!(R")x

H'(R™). Namely, mass (L? norm):
M[u(t),v(t)] = ol z2@n + [¥]72n). (1.5)
and energy
Elu(t), v(t)] 221(||VU(15)H%2(W> +IVot)lZ2n))
5 O oy + 280 0Oy + 02 )

=E[p,1)]. (1.6)

The following results have been established:

1) When 1 < p < 2/n, the solutions of the Cauchy problem (1.4), exist globally in time
(see [8]).

2) When p > 2/n, the solutions of the Cauchy problem (1.4), blow up in a finite time
for some initial data (E[p, ] < 0), especially for a class of sufficiently large data (see
[6, 8, 11, 13]). On the other hand, the solutions of the Cauchy problem (1.4), globally
exist for other initial data, especially for a class of sufficiently small data (see [4, 8, 12]).

In the sections 2, 3 and 4 we will study the blow-up and the Cauchy problem for the
problem (1.1) with h, z € L>(R).

In [16] Xiaoguang et al. they obtain a sharp threshold of blow-up for (1.4), to
study the blow-up threshold, the following stationary system associated with (1.4) was
considered
L——Ei&}H@W+6@PWM“U =0

T (17) [stat]
LR+ (IRP + BIRPHQPT R =0

Let, sc = 1/2 = 1/p, oy = ()00, Q2 + IRy

AQ —
AR —

[lu,v] := E*[u, v]M*~*[u, )],
and
0, 5= (1700 ey + 19002 el + o0 O~

Xiaoguang et al. proved the following result:
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Theorem 1.1. Let 2 < p < A,, where A, = o0 ifn=1,2, A, =2/(n—2) ifn >3

and (|z|p, |z|v) € L*(R™) x L*(R"). Assume that

S¢ Sc

Clp. ] < T1Q B = 2" (0y00)"

then the following two conclusions are valid.
1) If V], ] < 9[Q, R], then the solution exist globally in time.
2) If V[, ¥] > V(Q, R, then the solution blow-up in finite time.

Note that the system (1.3) its equivalent to

u(t) = Sty +i [ S(t — s)h(w(s + to)) F(u,v)(s)ds,
v(t)= St +i fot S(t— s)z(w(s +tg))F(v,u)(s)ds,

(1)

where S(t) = e® the group of Schrodinger equation. Using standard ideas we can see

that the system (1.8) is locally well-posed in H'(R") x H*(R™).

Proposition 1.1. Suppose p be asin (1.2). Given any (p,v) € H (R")x H'(R"™), h,z €

L>®(R) and ty € R, there exists a unique, mazimal solution

(u,v) € C([0, Taa), HY),

of (1.8). Also the solution satisfies the blowup alternative, i.e. if Tyae < 00 then

[(u(t),v(E)||l12 — o0 ast — Thae. Moreover,
(u,v) € LY(0,T), W) for 0<T < Thaa,
for all admissible pairs (q,r).

Proof. See [5].

g

The purpose of this paper is to study how the solution (u, v) behaves as |w| — oco. It is

natural to expect that the nonlinearity averages to {I(h)(|U[*P+3|U|P~HV [PT)U, I(2)(|V]*’+

BIV[P~HU PV} as |w| — oo, where I(h) is the average of h, i.e.

(1.9) |med
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and that the solution (u,v) of system (1.8) converges locally in time as |w| — oo to
solution (U, V) of
iU, + AU + I(h)(|U)% + BIUP- VU = 0,
iV, + AV + 1(2)(|[V]* + pIVIPHUPPTV = 0, (1.10)
Ufz,0) = p(x)  V(z,0) = ¢(x),

or equivalently

S
—

~
N—

Il

Sty +il(h) [y S(t —s)F(U,V)(s)ds, L11)

<
S
~
S~—
Il

S(t)y +il(z fo s)F(V,U)(s)ds.

This is indeed what the following result shows.

Theorem 1.2. Assume (1.2). Fiz an initial value (p,v) € H'(R") x HY(R"). Given
to,w € R, denote by (ugyw,Vyw) the mazimal solution of (1.8). Let (U, V) be the
solution of (1.11) defined on the mazimal interval [0, Spaz)-

o Given any 0 < T < Spaz, the solution (Ui, u, Vi, w) ezists on [0,T] for all ty € R
provided |w| is sufficient large.

o We have that (uy o, Viyw) — (U, V) in LY((0,T), W) as |w| — oo, uniformly
in ty € R, for all admissible pairs (,p) and all 0 < T < Spae- In particular,
convergence holds in C([0,T], H') for all 0 < T < Sz

Whenever S,,,; = 00, one may wonder whether or not (4w, vt w) is global when
|w| is sufficiently large. The following result shows that the answer is positive provided

(U, V) has sufficient decay as t — oc.

Theorem 1.3. Assume (1.2). Set

4p(p +1)

r=2a+1) :m.

(1.12)

Fiz the initial data (p,v) € H'(R™) x HY(R™). Forty,w € R denote by (usy w, Vigw) the
mazimal solutions of (1.8). Suppose (U, V') be the mazimal solution of (1.11) defined

on the mazximal interval [0, Spaz). If Smaz = 00 and

(U, V) € Lo((0, 00), L' (R™)), (1.13)

ansO1

dacons
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then it follows that (ut, ., Vew) @s global for all to € R if |w| is sufficiently large.
Moreover, (uy, o, vi9w) — (U, V) in L7((0,00), W) as |w| — oo, tg € R for all

admissible pairs (v, p). In particular, the convergence holds in 1.>°((0,00), H').

The rest of the paper is organized as follows. In Section 2, we obtain some preliminary
results. In Section 3, we prove Lemma 3.1 and in the Section 4, we prove Theorems
1.2 and 1.3.

NOTATION

The L%-based Sobolev space of order s will be denoted by H*® with norm

wo= ([ areriere)

For f:[0,7] x R — R we define the mixed L}L?—norm by

T p/q 1/p
\umwyz{A [ iterar] m} ,

with usual modifications when p = co. We use the letter C' to denote various constants

1]

whose exact values are immaterial and which may vary from one line to the next. We
use the notation

L"(R™) = L"(R™) x L"(R")

H*(R™) = H*(R") x H*(R™)

oo = -1

2 = (11 @y

G 2 = -z + 1]l

Le LT := L*(0,00), L"(R"™))

LsL! .= L*((0,T), L"(R™))

L*((0,T),L") :== L%L" x L%L"

F(u,v) == (Jul* + BlufP~t[v["*)u.

C([a,b], H') := C([a,b], H(R")) x C([a,b], H'(R™)).
L?((a,b), Whe) := LP((a,b), WHI(R™)) x LP((a,b), WH4(R™)).
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2. PRELIMINARY RESULTS

2.1. Useful estimates. Given 1 < p < oo, we denote by p’ its conjugate given by
z% =1- %. We use the standard Sobolev spaces and their embedding. We consider

the standard notion of a (non-endpoint) admissible pair (g,r), i.e.

= 2<r< —— (2.1)
q

2 n o n 2n
T - (n—2)+'

We will use the Strichartz estimates. More precisely, given any two admissible pairs

(g,r) and (7, p), there exists a constant C such that if

u(t) = S(t)p +7l/t S(t—s)f(s)ds,
then "
ullLo @ or@ny) < CUlell2@ny + 11 @ @ey))- (2.2)
In this section, we first recall some results concerning the local and global well-
posedness for (1.8). Next, we study the effect of the oscillating term f(wt) as |w| — oo

on the linear, nonhomogeneus Schrédinger equation. Given h, z € L>(R), we consider

the equation
u(t) = S(t)p +1i [y S(t — $)h(s)F(u,v)(s)ds,
u(t) = St +i [y S(t — 8)z(s)F (v, u)(s)ds,
which is slightly more general than (1.3).

(2.3)

Proposition 2.1. (Local Existence) Assume (1.2). Given A, M > 0, there exists § =
d(A, M) such that

h]loo + [|2]lec < A forall h,ze L*¥(R") (2.4)
lolliz + [¢le <M forall ¢4 € H(R"), (2.5)
then there exists a unique solution (u,v) € C([0,8], H') of (2.3). In addition
[1(s )l 0.0), 1) < CLlllo + [[9][12 3 (2.6)
Moreover, (u,v) € L7((0,8), W°) for all admissible pairs (7, p).
Proof. See [5] or [14]. O

We will also use the following result.

equan
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Proposition 2.2. Assume (1.2). Let r,q,a be defined by

dp+1) dp(p+1)
=9 1 = = . 2.
e, gt W )
Note that a > %. Given any A > 0, there exists ¢ = e(A) and A such that if
[1Alloo + 1l2]le0 < 4, (2.8)
1SC) (@, )llLeooorLry S & forall o, € H(R), (2.9)

then the corresponding solution (u,v) of (2.3) is global and satisfies

[|(w, )|Le(0.00).) < CHSC) 2 ¥)Lao00).ry (2.10)
[ (s ) la(o,00)wrory + 11(w ) [Loe (0.00), 1) < All[(0, )12 (2.11)
Conversely, if solution (u,v) of (2.3) is global and satisfies
[(w, V)|La((0,00),27) < €, (2.12) [hip-c

then
|’S(')<907¢)H]La((0,oo),LT) S C||(u,v)||]Lu((07oo)7Lr). (213) xm-13

Proof. Let Gpu.(t) == zf(f S(t — s)h(s)F(u,v)(s)ds. From (2.3), we obtain that

u(t) = S(t) + Ghuo(t),

(2.14)
v(t) = S(t) + Gooult).
Then
[ ullza Ly = 1SCelleary | < NGhupllogry, VO <T <Tngs (2.15)
and
Hvlleery = 1S(OY||zarr | S NGewullrery, VO <T < Thae. (2.16)
From ()-(), (2.15) and (2.16), we obtain
lellzgor < 1SC)ellegry + CAL [l + B1lollh L lullfs 3 (2.17)
and
10llpg.or < NSC)Wlngrr + CALIIZEG + B lullfe L, 101 1 } (2.18) |eq-g

From estimates (2.17) and (2.18), we conclude

[(w, 0)lzeo.m).r) < ISCH e, D L0,y + CA{ Xz (0, v) + Xp(v,u) b (219) |eq-h
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where
Xp(, ) o= Nl 258 + B ol 5L |l 1.
Let € = ¢(A) be small enough so that
(1+2B)2%T2*CA < 1. (2.20)
From (2.9) and (2.19), we can say that
| (w, 0)||Laqo,1),0r) < € + CA{ Xp(u,v) + Xp(v,u) } VO0<T < Thaa- (2.21)
We will show that
(s ) |lesory o < 26 Y0 < T < The. (2.22)

The idea is to use contradiction method to get it. Suppose that there is T\ € [0, T},04)
such that

f(T) > 2e where J(T) = [|(w, v)||Leo,m),Lr) 0<T < Tz (2.23)

As f(t) is a continuous function and increasing in 0 < T' < T},44, there is 0 < Ty < T
such that
f(To) = [|(u, v)[|La(omy),r) = 2e.
We observe that, from (2.21)
f(y) <e+ CA{ Xrp,(u,v) + Xg,(v,u) },
< e+ CA{ (267H 4+ B2/ + (26H 4§26+ }, (2.24)
= e+ CA2(2¢)*T(1 + j).

Therefore,
2¢ < e+ 22TIC AP (1 4 ),

(2.25)
1 < 22HCAe2(1+28),

which is a contradiction.

We now show that

[[(w, V)| Le (0 Tman).zry < 20 1S () (05 ) |La(o.1),27)-

If possible, assume that

[|(s 0) | (0 T, 2y > 2L IS () (03 D) L0707 (2.26)

eq-i

eq-j

cont-a
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From (2.19) and the argument of continuity, we have
[|(u ) lLeqom),2ry < ISCH@s )l Leqomy,ry + U Ghuollegry + 11Gepulligry 3o (2.27)
From (2.26) and (2.27), we obtain
[ (s ) e (0 Tman).Lr) < 2{ N GhwollLg iy + |Geplligry }- (2.28)
From the above inequality, we get
Xt 2 o+ 80l il o)Guer, (229

where Gy, . r = HGh,u,vHLaTLg + HGz,v,uHLaTL;-
Now, from (2.22) and (2.29)

CAXry,,, <2CA((26)%F + B(26)* )Gh.r = (1 + B)2*PTCA* G v < G

which is a contradiction.

Us note that, applying Holder’s inequality
() Pu(t) [y < Collu()|[Z[ul)]lwrr- (2.30)
Moreover,
Nl ol ul o < Co{llul ol + Hul 2 ol ullwee + [olfwer ), (2.31)

where 1’ is the conjugate of r and that V(|ulP*!) = (E)|u[P " (uVu + uVu). We

observe that

2 2
[l el [y < [lullZe ol g (2.32)
and
g (p—1)¢' (p+1)¢ q (p—1)¢' (p+1)q q
/ [lullzy = lollzy ™ ully-dt < lullzg o 10llZe e [Tullfe g (2.33)
0

where ¢’ is the conjugate of ¢. Thus,

—1)d’ 1d’
1AF (u, 0)| o 0.y iy < By(lluall 1y 481 ll 227 ol F 2l gy +[0]] g s}

(2.34)
Consequently

1)l noryrin + 1 o)l lemqomyam < Allle,@)llle Y0 < T < Thngs. (235)

Moreover by continuity

(2, V)[|La(0,Tmae)wrry < A0, )] |12,

des-c

desw-a

desw-b

desw-c

desw-d

desw-e

des-m
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in particular, (u,v) € L>®((0, Tyuaz), H') so that T4, = co by the blowup alternative.
U

Corollary 2.1. Assume (1.2) e p > 2/n and a,q,r be as defined in (2.7). Suppose
that h,z € L*(R) be such that ||h||p=~ + ||z]|r= < A for some A > 0. Also let € = ¢(A)
and A be as in Proposition 2.2. For given (¢,v) € H'(R") x H'(R™), let (u,v) be the
corresponding solution of (2.3) defined on the maximal interval of existence [0, Tnax). If
there is 0 < T < Tyax such that ||(e®u(T), " v(T))||Le((0,00):17) < €, then the solution

(u,v) is global, i.e. Tyax = 00. Moreover

1 ) [ ((r00),0m) < 26, 1w, )| ((z.00).w1ry < AJ[[(u(T), 0(T)[[12- (2:36)

Proof. 1f we apply Proposition 2.2 with (¢,1)) replaced by (u(T"),v(T")) and h(t), z(t)
replaced by h(t +T) and z(t + T'), it can be infered that the solution (w;,ws) of the

system
wy (t) = ePu(T) +1i f; AN (s + T)F (wy, ws)(s)ds, (2:37)
wo(t) = eu(T) +i [} =982 (s + T) F(wa, w:)(s)ds,
is global and satisfies
[(w1, wo)l|Laoporizry < 26, [[(wy, wa)lLa(o.00)wrry < A[l[(w(T), o(T))|[[12- (2.38)
Now, if we define
u(t), 0<t<T,
= (2.39)
wi(t=T), T <t<oo,
(), 0<t<T,
b= (2.40)

we(t=T), T <t< oo,
then it can be seen that (u,0) solves (2.3) in [0, 00), thereby completing the proof. O

In what follows we prove some more estimates that will be used in sequel.

Proposition 2.3. Assume h € C(R,R) is a periodic function with period T > 0 whose
average is given by (1.9). Set (q,7) be an admissible pair. Given f € LY (R, L™ (R")),
it follows that for every admissible pair (7, p)

/0 h(w(s+1t9))S(t —s)f(s)ds — I(h)/O S(t—s)f(s)ds (2.41)
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in LY(R, LP(R™)), uniformly in ty € R.

Proof. A detailed proof of this result has been presented in [7]. For the sake of clarity,
we just give a sketch here. Using the Strichartz estimate (2.2), we have that

[ / (s + 10)S(t = )/ (5)ds i szory < OB~ @nr ey (242)

So, by the density argument, it is enough to prove (2.41) for f € C}(R;8(RY)). Defin-
ing, A(t) := h(t) — I(h) and A(t fo s)ds, one has

%A(w(s +10)) = wAW(s + o).

Now, integrating by parts and using the Strichartz estimate (2.2), it is easy to obtain

H / (5 +10))S(t — ) f(5)ds | o gamy) <
(2.43)

mHAIILw 1z @ze@ey + 1F )22 + 1fe = iDFll Lo orr vy ]

Taking |w| — oo, the result of the proposition follows. O

3. PROOF OF THE MAIN LEMMA

The following Lemma plays a crucial role in the proof of the main result.

Lemma 3.1. Assume (1.2). Set the initial data p,v € H'(R™) and ty,w € R, denote
by (Utyw, Vigw) the mazimal solution of (2.3). Suppose (U, V') be the mazimal solution
of (1.11) defined in [0, Spaz). Let 0 < T < Spap and assume that (U, w, Vi, o) €TiSES on
[0,T] for |w| is sufficiently large and that

lim sup sup [ (ueg,w, Vo w1 ((0,7),11) < 00 (3.1)
|w|—00 to€R

It follows that

SU%HWO,W — Ullvvomywiey — 0, when |w| — oo, (3.2)
to€

for all admissible pair (v, p). In particular, (i, o, Vigw) — (U, V) in L=((0,T), H').

equam
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Proof. Symmetry of the system allows us to work for a single component. The estimates
for the other component will be similar. We consider |w| > L, where L is chosen

sufficiently large so that

sup sup ||(Usgws Veg.w)||Loo((0,1),11) < 00 (3.3)
\w|2L toER

Let r =2(p+1) and ¢ = 4(2—;1) so that (¢, r) is an admissible pair. As the initial

data for w,, and U are the same, we have,
t
Uy — U = z/ S(t—s) [91F(Uto,w, Vo) () — 1(61)F (U, V)(s)}ds
0
t
—i / S(t — ) [0 [y [Pty (5) — 1(0)|UPPU (5)]ds
0

t
+i5/ S(t = ) [0 |utg P~ vrg " M utew(s) = IO)|UPHVHU(s)] ds
0

=: A+ B.

34

The estimates for A follow from [7]. In fact, from [7] we have

Al a0y + 1Al Lroayzey < Co + Clltrgw — Ullpo (o,05L7): (3.5)

for all 0 < ¢t <, where C,, — 0 as |w| — oc.

We move to estimate B by writing it as
t
B = Zﬂ/ S(t = )01 [|utg P vrg.wl" g (s) = [UPTHVHU(s)] ds
0

+iB /0 St = )6 — 1)) U VIF U (s)ds (36)

= Bl + BQ.
We note that |U[P~1|VPHTU € LT((0,1); L™ (R™)), because for r = 2p+ 2, 7’ = T
using Holder’s inequality, one has
/ / pr (p+D)r
U VI de = | (U V] d
R™ Rn
_p_ ptl
< ([ qran)™ ([ i) (3.7)
R™ R™

pr (p+1)r

= Uz VI
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From Sobolev embedding, we have

Uller < CNON -y < 01, (38)

2
whenever p < (e Hence

prq (p+1)rq’

TP VIO o) / U 2 |V 2 dt = / ULV 5 dt < oo,

as required. Therefore, from Proposition 2.3 we conclude that

sup ||BQHLq ((0,1);L7) + ||Bg||L~/ ((0,1); Lp) 0, as \w\ — OQ. (39)

to€R

To estimate B; we proceed as follows. For p > 0, we have that

w ’p+1uto,w - |U|p_1 |V;507W

[ futtg "~ 0, PR < (lutg ol lorgl” + 1UPIVIE) |[veg| — V1]

< (|ut07w|p|vto,w|p + |U|p|V|p)|vto7w - V|

(310
Using Strichartz estimate, one obtains
1Billz(0aszey < Cll(Jutg ol lvigwl” + [UPIVIP) [t = Vo 0.2 (3.11)

Using Holder’s inequality, and the fact that » = 2p + 2, we get

(sl [Vt PHU IV ) 020 0=V Il 1o < (Huto,wHLT||Uto,w||LT+||U||LT||V||LT>||Ut0,w_v||LT-

(312

Inserting (3.12) in (3.11) and using Hélder’s inequality in time variable, yields
11l 2 0.05520)

< C(Huto,wHLw«o,w;mHvto,wHLoo«o,t);Lr) + HUHLo%(o,t);Lr)\IVI\Loo((o,t);m) [vtow = VilLe (0007

313

The estimate (3.13) and Sobolev embedding H'(R") — L"(R™) imply

1B1l[ o (.ie) < Cllvegw — VHL‘I'((O,t);L’“)‘ (3.14)

From (3.6), (3.9) and (3.14), one obtains that

IBllrvmizey < Cuo + Clivigw = Vi 0,015m): (3.15)

for all 0 < ¢t <, where C,, — 0 as |w| — oc.
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With the similar procedure for the admissible pair (g, r) we get estimates analogous

to (3.15), to have
1B Laqoyzry + [ Bllvo,520) < Coo + Cllvtgw = Vilpe (0,051m5 (3.16)

for all 0 < ¢t <, where C,, — 0 as |w| — oc.
Now from (3.4), combining the estimates (3.5) and (3.16), we get

||Uto,w—U||Lq((0,t);L")+||Uto,w—U||LV((0,t);LP) < Cw—’—C”uto,w_UHLq'((O,t);LT)+O||Uto,w_VHLq'((O,t);LT)‘

(3.17)
With the analogous argument we get the similar estimate for the second component

too, i.e.,

[vt0.0=V | za (0027 F1Vt0,0 =V [ L7 (0,0)520) < Cw“‘CHUto,w_V“Lq’((0,t);LT)+C||uto7w_U”LLI’((O,t);LT)’

(3.18)

From (3.17) and (3.18), we conclude that
H(uth>Z%muJ __((]7LI)HLQKO¢LIW)4_H(Utmwv1%0#0 _'((]’L/)HlvﬂoﬁﬁLp) (3 19)
< Gy + Ol (ttg,w5 Vio.w) — (U, VIl (0.0).17»

for all 0 < ¢ <, where C,, — 0 as |w| — 0.
From (3.19), we have that

1Ctto 5 Vr0.0) = (U V) [[Lago,psery < Coo + Ol (Ui vi0) = (U, V)llnw oy,0my- - (3:20)
Since, ¢ > ¢', we have
| (tto05 Vto.0) — (U, V)[[Laqo,;2m) < CCu — 0, |w| — o0. (3.21)
Therefore, from (3.21) and (3.19) one can conclude that
Sup [, vio.w) = (U V)llwronny = 0, lwl = oc, (3.22)
for all admissible pairs (7, p).

Next, we move to prove convergence in the space L7((0,1); W*). In other words,

we prove the following
IV[(u,v) — (U, V)]”ILW((O,I);LP) — 0, |w|— oc. (3.23)
Note that

IVI(u,v) = (U, V)|lLrouy;zey = [IV(u = U)llLropyszey + IV (0 = V)lLyop:ce)- (3.24)

eq-m24

eq-m25
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We have,
V(u—U) =iV /0 S(t — )02 [ulus, o (5) — 1(00)|U[2U ()] ds
+iBv /0 CS(t — )0y [ulP ol u(s) — IO TPV T (s)ds (325)
— I+ I,

With the same technique as in [7], we obtain

11l 2 (0,0);20) — O |w| — o0. (3.26)

To estimate Iy, let us define g(u,v) = |u[P~ u|v[PT!] so that

Vo(u.v) = 1‘%1]”|P—1|U|p+1 Vu N Z%1|u|p_1|v|p_1m7 Vo
7 ’%1|u|p*3|v|p*1u2 Viu 7%1|u|p*1|v|p+luv Vo
=: ¢} (u,v) - Du+ gh(u,v) - Dv.

(3.27)
Now, using (3.27), we get
I, =iB /Ot S(t — s)[61(g1(u,v) - Du+ gh(u,v) - Dv) — I(61) (g1 (U, V) - DU + g4(U, V) - DV')]ds
=if3 /t 01S(t — s) [} (u,v) - (Du— DU) + gh(u,v) - (Dv — DV)]ds
#i8 [ 051 = ) (6h(0s0) ~ 5(0.V)) - DU + () = gh(U.V) - DV ]ds

+zﬁ/ (01 — 1(01))S(t — 8)[g,(U, V) - DU + g4(U, V) - DV ]ds

= J1+J2+J3.

(3.28)

Now, using Strichartz inequality, for any admissible pair (v, p) we get

1]l 2 oy < C{lgh (w,v) - (Du = DU o o 0y:2ry + 1920w, v) - (Dv = DV)l| o (02 |
< C{lllgi (w, )[|(Du = DUl o 0.0y + Mgt )| (Dv = DV)l| ot (0,07}

(3.29)
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Since

|91 (u, v)] < CplulP~ o], 195 (u, v)| < CplulP[v]?
|Du — DU V=) 20V (u — U)|
u — = = u = )
V=1 (3:30)
V-V
po—ovi=|[ YTV ) covw-y,
V(v-V)

we obatin from (3.29) that

11l 000 < ColllulP PPV (w = D)l o 0,095y + CollluP [0l [V (0 = VI 1ot 009,171

< Gollal ol M, o it IV = D)oy

+ Gl Pl o, p+1)||v<v— V)l o

(3.31)

Using Holders inequality, we have

_ +1
[ ul” 1|U‘p+1HLm((OJ);L1’T}) < ”uHLoo ((0,0);L7) Hvyiw((o,l);y) (3.32)

. -eq—d8
[|ul?lof| per - < Opllullee 0,0, 1V I (0.2

Le((0):L 7 )

Now, using the Sobolev embedding H' < L", we obtain from (3.32) and (3.31)

11 v 0ayzey < Gopll(V(w = U), V(o = V)llLe (0., - (3.33)

With the similar procedure, also for the admissible pair (¢, r), we obtain

il zaoy:ery < Goll(V(u = U), V(o = V))llvar (00),0r)- (3.34)
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To estimate Jo, we use Strichartz estimate for the admissible pairs (v, p) and (g, ),

and the fact that the solution (U, V) € LYW™" to obtain
120l o (oyizey + 12l Laopizry < Cll(gh(u,v) = g1(U, V) - DU Lo o)
+ Cll(ga(u, v) = g5 (U, V) - DVl Lo 001;7)
< Cll(g1(u,v) = g1 (U V)l 2,
+ Cll(ga(u,v) = go(U, V) 2,

< Cll(gr(u,v) = g1 (U V)|

(0.0):L )

((0,0);L7™ 2)||v ||L‘1((0,l),LT)

LT ((01)L7°2)
TN VAL R A (AT N
(3.35)

We have that as |w| — oo, ||u — Ul|gerz — 0 and [[v — V||ger2 — 0. Using the
interpolation relation [[u—Ul|gs < |lu—U||;2%||u—U]|5:, we can conclude that u — U
and v — V in C([0,]; H*(R™)) as |w| — oo for 0 < s < 1. If s is sufficiently close to
1 such that s > % — 7, then using the Sobolev embedding H*(R") < L"(R"), we have
that u = U and v — V in C([0,]; L"(R")) as |w| — oo.

Note that [|g; (u, v)|| i Ul

Lz < Clullrr Yot < oo, and similar
holds for ¢ (u, v). Now, from dommated convergence theorem, we obtain that the map-
pings (u,v) = ¢} (u,v) and (u,v) = g4(u,v) are continuous from L"(R") — L72 (R")

and consequently,

sup [[1g; (11, 0) G4 (U V) e gy HI98 (0 0) =G5 (U V)l rt] = 00 ] = o0

toeR
) (3.:30)

From (3.35) and (3.36) we conclude that
SU%[HJQHLW((()J);LP) + ||<]2HL‘1((OJ);LT)] = Cw — 0, |w| — OQ. (337)
to€

It is easy to see that g{(U,V) - DU + g4(U,V) - DV € L7((0,1); L (R")), so by

Proposition 2.3, we have

SU%[HJ?,HLW((()J);L@ + ||J3||Lq((0,l);LT)] = Cw — 0, |w| — OQ. (338)
to€

Combining the estimates (3.33), (3.34), (3.37) and (3.38), we can conclude as in
(3.22) that

sup ||V (u,v) = VU, V) |lLvop);ee@ny — 0, |w| — 00, (3.39)

toER
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for all admissible pairs (7, p).
Hence the result of the leamma follows from (3.22) and (3.39). O

4. PROOF OF THE MAIN RESULTS.

Proof of Theorem 1.2. Let T' € (0, Sax), 4 = max{||h||co; ||2|loc },

M =2 sup

Sup I

W), V()llh.e, (4.1)

and § = §(A, M) be given by Proposition 2.1. Tt follows by this proposition that

(Ut w(t), Vyy (1)) exists on [0, ] and satisfies

[t 05 Vo )l [Loe(0.6),11) < C (2, ¥)][]1,2- (4.2)
Now Lemma 3.1 implies that

sup || (teg ws Vo) — (U, V)| (0,6),w1ey = 0,  when  |w| — oo,
toeR

for all admissible pair (7, p) and in particular

su% (U005 Vo) — (U, V)|lLr0,6),51) — 0, when  |w| — oo. (4.3)
to€

Combining (4.1) and (4.3) we obtain that for |w| sufficiently large

sup |[[(tg..(9), vig.w(0))[l[1.2 < sup [[[(U(5), V(9))[l|1.2 + Yem (4.4)

tocR to€R 2

Applying again Proposition 2.1 translated by ¢ and using (4.2), we have that wuy, ()
exists on [0,26] and that

lim sup sup || (tzg s Veo.w) ||L((0,26),51) < 0C.
|w|—oc0 to€ER

If 26 < T, iterating this argument, we deduce that

lim sup sup || (g w: Veo.w)|L(0,1),51) < 00.
|w|—o0 to€R

The result then follows from Lemma 3.1. O

Proof of Theorem 1.3. Let ¢ € (0,¢(A)), where €(A) is as in Proposition 2.2. For
sufficiently large 7', from (1.13), one gets that

. (4.5)

A~ m

(U, V) |wa((z,00):0m®n)) <
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Applying the Proposition 2.2 to the global solution (U (t),V(t)) = (U(t +T), V(t +
T)), the inequality (2.13) yields

ISO@T), V(T))llLsooonzry = [SCIU(0), V(0)llLe(oooz)

.. c (4.6)
< 20U, V)llLe(@oonzry = 2V V)llua(rooyen) < 5
Now, in the light of this inequality, using Corollary 2.1, we get that
(U, V) lLe((ooy:ery < AU, V(T))l[1.2- (4.7)
From Theorem 1.2, we have that
su% | (tto 0, Vegw) — (U, V) |lLr 0,010y = 0, |w| — o0, (4.8)
to€
for all T' < oo and all admissible pairs (7, p). So, in particular, we have
sup |[[ (uto (1), vt w(T)) = (U, V)|l = 0, |w| = o0. (4.9)

to€R

Therefore, we have, using (4.7) that

eq-z2

eq-z3

eq-z4

eq-zb5

1S () (wto (1) V1o (T lLe(o.00)izry < 1S () (Uto w(T); Ut (T)) = SC)U(T), V(T)) Lo ((0,00):L)

HISOWT), VIT) e 0,000:2m)
€
< |||(ut0,w(T>’Uto,w<T)) - (U(T)) V(T>)|||1,2 + 5 <6
(4.10)
for sufficiently large |w|.

Hence, from Corollary 2.1, we conclude that the solution (uy,,,, Vs w) is global and

satisfies
sup ”(utmw,Uto,w)||La((T7oo);Lr) S 26 (411)
to€R

and

H(uto,wUto,W)Hqu((T,OO);W“) + H(uto,wvUto,W)HL""((T,OO);Hl) < Am(uto,W(T)7Uto,W<T))|H1,2-
(4.12)

Also, in view of corollary 2.1 and (4.5), we have

(U, V) lLe((rooyir) < € (4.13)

and

U V)l ooywrny + (U, Ve (rooymny < AIUT), VT))[|1.2- (4.14)

eq-z7

eq-z8

eq-z9

eq-z10
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Let My = supg<;<r |[|(U(T), V(T))|||1,2. From (4.8), (4.10) and (4.12), it is easy to
see that there exists L > 0 sufficiently large such that

sup sup sup |||(ug . (t), vegw ()] 12 +sup [[[(U (@), V(E)|][12 < My < oo, (4.15)
|w]>Lto€R t>0 t>0

In what follows, we prove that, for all admissible pairs (7, p), (ttyws Vtgw) — (U, V)
in L7((0, 00), W) uniformly in ¢, € R.

Let |w| > 1 so that the solution (uw,vt,.) exists globally and fix 7" > 0 to be
chosen later. Note that,

||<ut0,w>vt0,w) - (U’ V)“]L’Y((O,oo),leP) < ”(Uto,wa Uto,w) - (U7 V)H]L'Y((O,T),WLP) (4 16)

+ H(uto,w> vto,w) - (U7 V) HL“V((T,OO),WLP)'

From Theorem 1.2, we have that the first term in the right hand side of (4.16)
converges to zero as |w| — 00. So, the convergence we are looking for would follow,
if we can prove that, for every e > 0, there exists 7' > 0 such that for |w| sufficiently

large
| (w05 Vo) — (U, V)L ((00)wie) < €, (4.17)

holds true.

Our objective from here onwards is to prove (4.17). Looking at the symmetry of the
model under consideration, the estimate (4.17) would follow if we prove it for a single
component, i.e., if we prove that for every € > 0, there exists 7' > 0 such that for |w|

sufficiently large, the following holds
[t = Ull Lo ((,00)w10) < €. (4.18)
Using Duhamel’s formula, for all ¢ > 0, we have
Uty (T +1) —U(T +t) = S(t)(ut, (T) — U(T))
e /Ot St — $)H(@(T + 5 + o)) F(tigy 0, 00y ) (T + 8)dis
—iI(h) /O S(t — )F(UV)(T + 5)ds

=: Q1(t) + Qa(t) + Qs(1).
(4.19)
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Using the Strichartz estimate, we obtain

1Q1() ]| (0,000 w10y < CAllute o(T) = U(T) 1 = 0, |w| = o0, (4.20)

Qo) 0 s0p w1y < CA[ a0 Pt ol oy
(4.21)

+ Bttt 0P~ 1.0 erluto,wHL‘ZI((T,OO);WLT,):| ’

and

1Q3 () L ((0.00) w10) < CA[H‘U‘ZPUHL‘Z/((T,OO);WLT’) 422)
4.22
4 BIOP VIO s

We have that, proceeding as in the proof of (3.23) (see (3.31) and (3.32) in particular)
ety o PPttt < Cllutgg ol 22 g ol (4.23)

and

pt1

ol Mgy ol o < Cllugllyr vt w7 g o

[z Y . (4.24)

Now, applying Holder’s inequality in time variable and the definition of » and a in

(1.12), we obtain that
Q2 27 (0,00, w0y < C AN (W0 V1.0 17 ((00y:1m | (0 05 Vg ) L ((ooywrry . (4:25)
Using (4.11), (4.14) and (4.15), we get
1@zl (0,000 w10y < CA(2€)PAM. (4.26)
With the similar argument, one obtains
1Q3]] 17 ((0.00). w10y < CA(2€)PAM. (4.27)

Now, given & > 0, we choose sufficiently small € > 0 such that C'A(2¢)*A(M;+M,) <

e/3 and |w| > 1, so that (4.19), (4.20), (4.26) and (4.27) yield
[t (t) = U@)[| L ((7.00) w10y = ||tttg (T + 1) — U(T + )| 7 ((0,00):w10)
< Q1) || Lv((0,00)w 10y + |Q2(E) || 13 ((0,00);w10)
(4.28)
+ Q3 ()] v ((0,00)w10)

<e,

eq-z21

eq-z22

eq-z23

eq-z24

eq-z25

eq-z26

eq-z27

eq-z28

eq-z29
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as required, and this completes the proof. Il
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