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Abstract

In this article we give a straightforward proof of refined inequalities between Lorentz spaces and Besov
spaces and we generalize previous results of H. Bahouri and A. Cohen [2]. Our approach is based in the
characterization of Lorentz spaces as real interpolation spaces. We will also study the sharpness and optimality
of these inequalities.
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1 Introduction

This paper is a generalization of recent results by H. Bahouri and A. Cohen [2] on Lorentz spaces and refined
Sobolev inequalities. Let us recall the setting: if ¢ > 1, the classical Sobolev inequalities | f||zr < C|/f|lyir+.q
with 1/p = 1/q — s/n, had been refined by P. Gérard, Y. Meyer and F. Oru [7] using a Besov space in the

right-hand side of the inequality:
1—q/p (1)

Bzo*n/q,w'

Iflze < CIAIYE 1)

Similarly the inequality || f]lLr < C|| f]| pea for ¢ =1 may be refined by

1£lzr < CUFIGLal 15 e (2)

In the previous formula, and for all the following theorems and inequalities, since «, > 0, we will say that
feByprnNB, B:p1if f can be writen using the Littlewood-Paley decomposition f = ZAj f and if the semi-

JEL
norms || - HB?’FO and || - || ;-5., are bounded: this way we will choose a natural representation in such spaces.
0 q1
In[2], H. Bahouri and A. Cohen show that it is possible to improve the estimate
1fllzne < Cllfll gz
where LP-7 is a Lorentz space, into the following inequality
1—
| £lles < OIFIGENF 200 (3)
q Bq
and they prove that this estimate is sharp since it is not possible to replace the norm ijn/ % above by a
weaker Besov norm Bffn/ % with » > ¢. They also ask the following question: it is possible to improve the
inequality
1fllzer < Cllfll gzo
into
1—
|fllzrr < CUANLEN I 8 when T # g7 (4)

r

The proof they gave for involves difficult estimations of Lorentz norms and could not easily be extended to
the case r # q.
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In this article we are going to provide an elementary proof of , show that the inequality is valid and we
will also study a wider family of related inequalities. The main idea is, in the spirit of [T1], to make a systematic
use of the characterization of Lorentz spaces as interpolation spaces and to never use the traditional definition
of Lorentz spaces as Orlicz spaces.

Our first theorem deals with the two first inequalities given above in a quite general form. As we shall see
in the proof given in section [3] this is just a variant of Hedberg’s inequality [§].

Theorem 1 Let a, >0 and qo,q1 € [1 + o0]. Let 6 = QL% € (0,1) and let % = 1;00 + (%. Then there exists a
constant Cy such that, for every f € F%% N EZP%(R™), we have

0

1-6
(@) < Co (sup 2jaAjf<x>|) <sup2jﬁ|Ajf<x>|) (5)
JEZ JEZ
In particular, we get :

1£1lzr < Coll I patao 1115 =50 (6)

Let us show briefly how to obtain the two first inequalities from this theorem. We observe that, for 0 < s < n/q

and for 1 < ¢ < +oo, we have W4 = F54 C F59 C Foy @7 . Thus, if weset o = s >0, —f = s —n/q < 0,
qo = q and q; = +00, we deduce from @ the inequality (/1] . In the same way, for 0 < s < n/qand 1 < ¢ < +o0,

we have Bs’q = F 54 C F s4 . Foy 7 and we get inequality (2) from inequality
Note also that we obtain by similar arguments the following useful inequality:
I1£llze < Coll fll 5 qollfHB s (7)
il _1-6 8 —

Our next result studies inequalities and . The proof of this theorem reduces to a few lines once we
have in mind the characterization of Lorentz spaces as interpolation spaces.

Theorem 2 Let o, 8 >0, qo,q1 € [1 + o0] with qo # q1. Let 6 = aQTﬁ €]0, 1], 1% = [1, +oc].
If f € B&% N B9 (R") then f € LP"(R™) and we have
Iz < Collflle%ao 1 £11% 5.0 - (8)

In the expression above we have the same index 7 in Lorentz and Besov spaces, so the the next step is to deal
with general Besov spaces By% and B*fB’q1 and to try to control a Lorentz norm in LP". For this we define

0= ;%5 €]0, 1 and we 1nvest1gate the Vahdlty of the inequality

1fllzo.r <CO||fH1€¥40||f||B S 9)

A scaling argument|'| gives us that necessarily we have 1% = 1q;09 + (%. For the index r, we will have a similar
condition as it is explained in the next theorem.

It is important to observe that inequality @D can be studied from the point of view of interpolation theory
by the following equivalent problem:
3a, 3-8, ,
[Bff)qov Bn ql]e,l C LP.

However the interpolation between these spaces with these parameters is a delicate issue as it is explained in
[10] and, to the best of our knowledge, it was not treated before.

The next result studies the validity of inequality @D in some particular cases.

— 104

To

Theorem 3 Let o, B,7* >0 and 0 = aLH? with % =

e

!The norms || ||x involved in @ are homogeneous: A > 0 — || f(Az)||x is an homogeneous function of A.



1) For f € B;"O’qo N B;lﬁ’ql (R™) and if r > r*, we have f € LP"(R™) and
I£llzer < ClIF " a0 1£115- -

2) Moreover, this inequality is valid for r = r* in the following cases :
a) r=ro=r1,
b) ro =qo and 11 = qi,
¢) 1<p<2andr*=p.

3) Finally, the condition v > r* is sharp.

As we shall see in section [3] theorems [2] & [3] are obtained by direct interpolation. However, it is possible to go
one step further with the following results:

Theorem 4 Let o, > 0, qo,q1 € [1 + 00|, g0 < ¢1. Let 8 = aaTB €]0,1[ and let Il] = 1;00 + q%. Let
1-0 , 0
7+7

T0 1

. Then we have

1£llzer < Coll £II aqollfllB S

g <19 <11 <qr and let L =

As we shall see, theorem |4| can be obtained by the use of inequalities and following the ideas given in
theorem 2

Note now that in all these inequalities we have 1% = 1q_09 + % for 1 < gp < ¢1 < 400 and a similar condition

791 . We also assumed the following relationship between these parameters:

for r,r¢ and r1: namely % = 1;’9
go < 1o <11 < q1.

A more general result is given with the next theorem:

Theorem 5 Let o, > 0, qo,q1 € [1 + 0], g0 # ¢q1. Let 6 = aLw €]0,1[ and let % =10 4 L%‘ Ifp <2, we
define

1= {(:w) 0.1 / 2(1—0) + 0y = } ~ (w0, o), (21, 31)]

with xo < yo and x1 < y1, then if ro and r1 satisfy xo < Tl <L - <ypory; < o L < % <z, and zf7l = 1;094—;
then we have

SRR

1£llzer < Coll £l 5 <10

1%

Finally, all these inequalities are sharp in the sense that it is not possible to remove the condition % = 1;00 + %.

The plan of the paper is the following: in section [2] we recall some facts about Lorentz and Besov spaces and
we will pay a special attention to the interpolation definition of Lorentz spaces. In section [3]| we will give the
proofs and finally, in section [4| we will treat the part 3) of theorem [3| where we will study the sharpness of these
inequalities.

2 Functional spaces and real interpolation method

For Besov and Triebel-Lizorkin spaces we will use the characterization based on a Littlewood-Paley decompo-
sition. We start with a nonnegative function ¢ € D(R™) such that p(§) = 1 over || < 1/2 and ¢(§) = 0 if
|€] > 1. Let ¢ be defined as w( ) = ©(£/2) — p(§). We define the operators S; and A; in the Fourier level by

the formulas S; f(§) g@(f)f(f) and A/\f(f) w(g)f(g) The distribution A;f is called the j-th dyadic block

of the Littlewood-Paley decomposition of f. If hm S;f =01in §'(R™), then the equality f = ZA f is called
JEZL
the homogeneous Littlewood-Paley decomp081t10n of f.

Definition 2.1 For 1 <p,q < 400 and s € R, we define the homogeneous Besov spaces as the set of distribu-
tions Bs’p R") ={feS'R"): ||f||B;,p < +oo}, where

1/4q

1l = [ o274, 714,

JEZL



with the usual modifications when g = +o00. For 1 <p < +00, 1 < ¢ < +00 and s € R, we define in the same
way the homogeneous Triebel-Lizorkin spaces by F>P(R™) = {f € §'(R™) : 1fll e < +o0} with
1/q
1Fllgse = || | D_27°Af1°
JEL
Lp
with the usual modifications when g = +o0.

Note that the quantities || - |
polynomials P.

pev and || - || gsr are only semi-norms since for j € Z we have A;P = 0 for all
q q

We turn now to Lorentz spaces which are a generalization of the Lebesgue spaces. For (X, 1) a measurable
space, they are usually defined in terms of the distribution and rearrangement functions ds(t) and f*(s) given
by the formulas

de(t) = p({z : |f(@)[ =t})  and  f7(s) = inf{t: ds(t) < s},

where p(A) denotes the measure of a set A. Then for 1 < p < +o00 and 1 < r < +o0, the Lorentz spaces
LP"(X, ) are traditionally defined in the following way

LPM (X, p) ={f: X — R:|fllorr < +o0}

= ([ (@)’ d)/ (10)

with the usual modifications when r = +o00, which corresponds to the weak-LP spaces. With this characterization
is not complicated to see that we have LP"? = LP and that for ro < r; we have the embedding LP"° C LP".

However, the previous formula is not very useful since it depends on the rearrangement function f* and we
will use a more helpful characterization which is given in the lines below.

where

We recall now some classical results from interpolation theory concerning the real interpolation method.
See [3] for a detailed treatment. If Ag and A; are two Banach spaces which are continuously embedded into a
common topological vector space V', if 0 < 8 < 1 and 1 <r < 400, then the real interpolation space [Ag, A1]g,r

may be defined in the following way: f € [Ag, A1]s,» if and only if f € V and f can be writtenin V as f = ij,
jez
with f; € Ag N Ay and (2799| f;]| a0) jez € €7, (27079 fi]la, )jez € €7 This space is normed with
. —jor r o \1/7 j(1—-0)r r \/r
1o Ao, = dnf (D277 f511,) "+ (Do 2707511, ) (11)

=24 e JEz

For f = Z f; and p > 0, with p # 1, we have the following inequality that will be very helpful in the sequel:
JEL

i (1-0)/r i(1— o0/r
11l ta0 1o < Coor (D o711 £51h,) O/ m81m,) (12)
JEL JEZ
An important property of the real interpolation method is the reiteration theorem:

Proposition 2.1
1) If 6y # 61, we have
HAO, Al]t%,rm [AO7 A1]917r1} 0,r = [A()’ Al](1—9)90+991,7“' (13)
2) If 6o = b1, is still valid if + = 1;09 + %,

We saw with the expression how to define Lorentz spaces LP" (X, u) for 1 < p < 400, 1 <r < 400 as an
Orlicz space. However, it will be simpler to use their characterization as real interpolates of Lebesgue spaces [3]:

Proposition 2.2 (Lorentz spaces as interpolation spaces)



1) For1 <p< +o0,1<r <400
1
P = [L17LDO}077‘ with§ =1——. (14)
p

2) For pg # p1, we have

1 1-6 0
[Lpo,Lpl} [Lp”0 Lpl’”] = LPT with — = + —.
p Do b1

3) In the case po = p1 = p we have
1 1-60 0

[LPTo [P, = LPT if - = +—. (16)
T To 1

Of course, and are consequences of through the reiteration theorem. In this paper, we shall use
decompositions and estimates when we deal with functions in Lorentz spaces, and we will mainly con-
sider the cases (X, u) = (R™, A) where X is the Lebesgue measure, or (X, ) = (Z, 1) with p the counting measure.

In the case of Lorentz spaces, we can use decomposition with an useful extra property (see [I1]) :

Lemma 2.1 Let 1 < p < 400, 1 <r < 4o0. Then there exists a constant Cy such that every f € LP"(X, )
can be decomposed as f = ij where
JEL
o |@IED2Y fill)]|, + 17PN fl L)

o < CollfllLer

o the f; have disjoint supports : if j # k, fjfi =0.
Inequality is very useful to provide an upper bound for the Lorentz norm of f and it will be systematically

used here. In order to get a lower bound, we shall use the following duality result :

Lemma 2.2 Let1 <p < 400, 1 <r < +o0. Then there exists a constant Co such that for every f € P (X, p)
and every g € Lp%l’frl(X, w), we have fg € LY(X, ) and

Lp1r1'

[ 19 | < Call s ol

Remark 2.1 As we shall see in the proofs given in the section below, the characterization of Lorentz and Besov
spaces based on real interpolation is a useful tool since the problem we are dealing with can be studied in terms
of weighted sequences. See [3], [3] or [10] for more details concerning the interpolation of Besov spaces.

3 Refined inequalities: the proofs

Proof of theorem . We just write A, (z) = sup 27¢|A;(z)| and Ag(z) = sup 277%|A;(z)| to obtain
JEL jEZ

D) <018 f(@)| <Y min (Z‘j“Aam QjﬂAﬁ(w))-
JEL JEL
We define jo(x) as the largest index such that 277 Ag(z) < 27994, (x) and we write

D < Y PPAsa)+ Y 27944 (2) < CAu(a)7 Ag() a7, (17)

Ji<jo(x) J>jo(x)

thus, inequality (5)) is proved. In order to obtain @ it is enough to apply Hoélder inequality in the expression
above since we have 0 = aﬁ:ﬁ and Il) = ‘9 + 4 9 |
Remark 3.1 Inequality (17 (.) is a little more precise than Hedberg’s inequality [, 8] - if f = I,g(x) where I, is
a Riesz potentmﬂ with 0 < o < n and zfg € B B0 then, if My is the Hardy-Littlewood mazimal functzon of
g, we have Ay(x) < CMg(x) and Ag(z) < C||g||Boo5 . Thus, we find easily the refined Sobolev inequality (1

See more details in [T, [7).

2defined in the Fourier level by @(f) =1&]7%g(&).



Proof of theorem |2. We start picking py and p; such that 1 < gy < py <p <p1 < ¢1 < +oo with % = pio + pil.
We have then i = ;—0“ + Z—l with 0 < a; <1 and 7 = 0,1. We write
—a; i j 1=a; o_j i 5j|—a(l—a; i
185 Fllzwe < 18 P N £ = (@18 Fs0) ™™ (292 g ) L0t 80:]

Recalling that % = 1q;09 + q% and 0 = a%_ﬂ we have —a(l — ag) + Bag = a(l — a1) — fa;. Thus, noting

p = 27 2le(1=a0)=Baol  ( and using the Holder inequality we obtain

i . 1— ir 1—
ST A S o < I 1 10 and 7 02 U < I e 1A

JEL JEZ
From this, and applying proposition we deduce that if f € B&% N B A4 (R™) then f € [LPo, L]y = LP.
Furthermore, using inequality we finally have:
1 Nzrr < Coprllfllalan 11500
|

Proof of theorem [3.

1) Case r > r*:  With no loss of generality, we may assume that gy < ¢; and we fix € > 0 such that

1 1 1 1 1 1 1 1 1 1
<-——g(———)=—<—Fe(———)=—< —.
q1 p q0 q1 b1 p qo q1 Po q0

The proof follows essentially the same ideas used in the previous theorem. Indeed, we have, for v; = 2 1A fllLao
and 7 = 2798||A; f| a1, and for g = 1 and €; = —1,

1—6+e;
1A Fllzre < 1A fll a0

N N

As rg # r1, we can only say that (7}_9+6'i817?_“8)jez € (P where % = %ﬁ:eig + 0%6 We may use inequality

, but we get only that f € [LP°, LPt]; /5, = LP* with p = max(po, p1), and satisfies inequality @[) with
r = p. However, we may choose ¢ as small as we want, and thus p as close to r* as we want; thus f satisfies @
for every r > r*.

2) Case r =r*:

a) if r = rq = ry : this case was treated in theorem

b) if ro = go and r1 = ¢y : This is a direct consequence of (6)) since we have || f||goai = || fll oo C || f]l pevai
and Hf”B;B,qi = ||f||1;—sq:ﬁ,qi C [[fll p=#.ai, We obtain .
c) Case 1 <p<2andr*=p: We just write
125 F e < A F I za 1A 120 = @125 fllzao) =0 (277745 fllar )
and get by Holder inequality:

—6 4
£ < Nzt 11—

We then use the embedding BB”’ C LP = LP?, which is valid for p < 2. [ ]

Proof of theorem [J] We see how direct interpolation has given us theorem [3] but we only obtained partial
results for theorems [4 and 5} Indeed, in theorem [d] we want a positive result for go < ro < r; < ¢y but thus
far we have proven the result only for (rg,r1) = (go,q1) and for go < ro = 1 < ¢1. To complete the proof of
theorem [4] we must reiterate interpolations to those new estimates.

This will be done through the following lemma, :

Lemma 3.1 Let o, 3> 0, qo,q1 € [1 +00], o < q1. Let 0 = ﬁ €0, 1[ and let % — 1(}*09 + (%
1) If o <ro < qi and let 1 = 1;)9 —l—%, then we have
-0 0
1o < Collf Il garao 11 =501 - (18)
0 q1



2) If go <71 < qu and let L = 1q;09 + %, then:

1fllzor <CO||fH1<“10||f||0—ﬁ ar - (19)

Proof of the lemma [3.3]. We only prove the first inequality, as the proof for the second one is similar. Since
f € B&%, noting \j = 27%|| A f||paw we have (X;);ez € £°. Thus, using lemma for the interpolation

gro = [¢9 1], .. 20
uB

: 1 _ 1—m n .. .
with 7o = a0 T g wesee that we have a partition Z = ZZk such that
keZ

2k (3 A;n)ﬁ

JE€EZk

s

JE€Zk

il

<CAjllero (21)
YA YA

Moreover since f € Bq’lﬁ’q1 we have

1/q1
( Z 92— JBq1||A fHLrn) /Q) c (9
keZ

JE€EZk

1
Let us note . = (Y 279991 |A; fHqu)l/ql, B =27k (DAL W0,y = 2RO (3 Ag.l)i and fi = Y A;f.
JE€EZ JE€EZK JE€EZ JE€EZk
We apply now inequality and theorem [2| to obtain

Il felle < CAkaH1 P £ o S Caf B 02kn0=0 (22)

and
[ fllLroa <CB||ka1aqo||fk||0—/3 a < Cagryy 027 k= =0), (23)

keZ

ithl=1=m47 ince L = 1=n 1 1:77 p Ipa] = [ with L = 1=
with - ~1+ L. But, since - o1+ and oo +gr» weobtain [LP, LP], . = L7 with £ = =4

Since we have f = Z fr, with these two inequalities at hand, and using , we find that f € [LP,LP%], .

sle

Remark 3.2 Note that we use twice interpolation arguments: first in estimate and then with inequalities
(@) and in order to obtain f € [LP, LP %], ..

Once this lemma is proved, it is enough to reapply similar arguments to obtain theorem Indeed, since we
have gy < 19 < 71 < q1, we start using £’ = [(% ("], . instead of |) and we obtain a partition Z = ZZk

kEZ
such that

M= (37 pmy

JE€EZ

<CAjlero
4o

O

JE€EZ

"

£7o

with % =1 “b+ L and where the sequence (A;)jen with A; = 29| A; f| s belongs to ¢ since f € Bo"q“

T1

Since f € Bmﬁ’q1 we have ((Y,cz, 27 JBai|| A, f||Lq1)1/ql)keZ € (% and we note again ay, = (Z 27700 || A JCHqu)l/q1
JE€EZK

= 27( Z /\go)i, T 2’“(1”7)(2 )\gl)ﬁ and fi = Z A f. Next, we only need to apply and

JEZL JE€EZ JE€EZ
instead of and to obtain

[ fxll e < CAIIfklll oo 1Fil - s S Cajy~02k0 =0

where % =

el <CB||fk||1aqufk||B o < Cajyy 27 H-m0=0),



S

that 1 = 1;—09 + T% and + = 1= " + ;L in order to obtain that f € Lp’ with L = =04 0 |

70 To 1

Finally, we have via inequality (12) that f € [L?°, LP"™], . with 1 = % To conclude, we use the fact

Proof of theorem @ Similarly, in theorem we want a positive result on the triangles 1/yg <73 < 1o < 1/x0
and 1/z1 <1y <r; <1/y;, and we have already obtained that the theorem is true for 1/yo <11 =19 < 1/z0
and 1/z; < rg=ry < 1/y; as well as for (1/x9,1/yo) and (1/z1,1/y1). To complete the proof of theorem [5], we
must reiterate interpolations to those new estimates. This will be achieved with the following lemma.

Lemma 3.2 Let ¥ be the set of points (x,y) € [0,1] x [0,1] such that, for z* = (1 — §)x + Oy, we have the
inequality
1Fllzoare < Coyllflles oo ||f|\B e

and let A, B,C € [0,1] x [0,1] such that [A, B] is horizontal (ya = yB) and [A, C] is vertical (xa = xc). Then :
o ifAc ¥ and B € ¥ then [A,B] C &,
o ifAe ¥ and C € ¥ then [A,C] C X,
o if Ae X and [B,C] C %, then the triangle ABC is contained in X.

Proof of the lemma [3.2. The proof of this inequality follows closely the ideas of lemma We give the
details here for the sake of completness.

We begin with the case of M € [A, B]: set x4, 20, p such that zo = (1 — 8)xza + 0p and zp, 21, p such that
z1 = (1 — 0)xp + 0p. Then, if we define xps such that xy; = (1 — n)xa + nrp, we must show that we have the
inequality

1fllpars < CO||fH1 w0 Hf||B s
with z = (1 — @)z + Op.
e Since f € Bf‘/go we have that (\;) ez € £2/7M with \; = 27%||A; f|| zs. Moreover, by hypothesis we have
xy = (1 —n)za +nrp, S0 we can write £1/%M = [Kl/“,ﬁl/”B]n’l/mM. Thus, with 1emma 1| we obtain a
partition Z = ZZk such that

keZ
H2—k77( Z )\jl/mA)wA ’ 2k(1—77)( Z )\;/mB)wB S Oll)\j”ll/w]vj.
ez YAYESY Jj€Zn o1/ X
We will note 8y = 2”"7( Z )\;/“)“, Y = 2k ( Z /\;/xB)xB and f = Z Ajf.
JEZk JEZy JEZy

e Since f € Bl_/f)’ql, we can write a = (( Z 2_jﬁ1/”|Ajf||1L/q’f)p)k . S
JE€EZk €

Now, since zg = (1 — 0)xz4 + 0p and z; = (1 — 0)xp + p we can apply theorem to the functions f; to obtain:

I fellpparzo < CA||ka1aqo kaHg—ﬁ w < Cafpp=f2kn(1=0)

[ fillpoara < CBHf/clllaqo kaIIB s S Cagy,~ P27 7m0

From these two estimates we deduce, since f = ka, that f € [Lp’l/ZU,Lp’l/Zl]ml/z with z = (1 — 1)z + n21.
kEZ
But by hypothesis we have zg = (1 — 0)z4 + 0p and z; = (1 — 0)x g + 0p, so we find that z = (1 — )z + Op.

We have proven that we may interpolate along horizontal lines and the vertical case is totally similar. To
finish the proof of the lemma suppose that A € ¥ and [B,C] C ¥ and take a point P € ¥. Write P € [M, N]|
where [M, N] is horizontal, M € [A,C] and N € [B,C]. Then we find that M € ¥ by vertical interpolation
between A and C, and that P € ¥ by horizontal interpolation between M and N.

Thus, Lemma[3.2] is proven, and this finishes the proof of theorem [f [ |



4 Sharpness and optimality of the inequalities.

In this section, we adapt Bahouri and Cohen’s example [2] to the general case. Their idea is to use the analysis
of the regularity of chirps by Jaffard and Meyer [9]. They express their example in terms of wavelets, as it is
easy to estimate Besov norms in wavelet bases [12] [[3]. They pick just one wavelet per scale and adjust its
support so that they are able to compute the Lorentz norm of the sum. As we shall see, their example can be
extended to the general case but we will not use wavelets, but atoms for Besov spaces [0l [16], as we shall use
only upper estimates for Besov norms. We consider a function w such that it is supported in the ball B(0,1), is
CN(R™) and / 2 w(x) dr =0 for all v € N” with |y| < N, for some N such that N > max(|«|, |5|). Then we

Rn
have, for all 1 < ¢ < 400, 1 <r <400 and |s| < N,

Z Z )\j7kw(2jx— ‘ < CZQJSTQ jnr/q Z |)\ r/q 1/7~ (24)

JEZ kezn JEL kezn

s

For our example, we shall fix some X € R, some Y € R and some v € R and we define

ZQJXZ (272 —k)  and ZQJYZ (272 — k)

j=1 kEK, J=i kEK,
where the K; are finite sets such that
e the supports of the functions (w(2/x — k))ji<j<jo ek, are disjoint each one from each other
e K, is a set of cardinal j with 28] < A4; < 20041 (which is possible if 6j; > 0 and &5, > 0).
For every r € [1,+00], we then have the following estimates (from (24))):

I fLll oo < (Z i (Xrenfaot /40 Y
J=i
1/r
Ifellg-sa < C’r< Z Qir(X—B~ n/q1+6/q1))
J=i1
||gL||Bfa,q0/(q0,1) < CT< 2jT(Y—a—n(1—1/q0)+5(1_1/q0)))1/r
' J=J
gzl go.ar/@-n < (Z 9ir(Y +B-n(1-1/q1)+3(1—1/a: ))) Ur

J=h
We thus fix X, Y,~ such that
X+a-n/q+0d/qp=0
X-B-n/g+6/qn=0 (25)
Y —a—n(l—1/g) +5(1 — 1/go) = 0

Since a« —n/qo + /90 = =B —n/q1 + 5/q1, we have as well Y + f —n(1 —1/¢1) + (1 — 1/¢1) = 0. This gives
that, for all r € [1, +00] we have

Ifellpeo < CRLYT

”fL”BT—/’)’Il < OrLl/T
1921l 5o a0/o-1 < C, LY
HgL“BfJn/(fn*l) < CrLl/T

where C,. does not depend on L. Theorem [2| shows that
I fellper < C.LY™ and  |lgrllposo-n.e < CR LY.
Moreover, since the supports of the functions w(2/z — k) are disjoint, we have

/ngL dr = Z 2](X+Y) Z 2= JnHszz > Z 2](X+Y n+6)||w||2

J=in keK; J=i1



From , we have X +Y —n 4§ = 0, so that, using lemma we obtain:

_1
lwllz> L < Cllfellzorllgell, 2per < Ol fLllzer L7

Lp—1’7—1
If we asssume that the interpolation inequality is valid, we get that

LY < Ollfullunr < Cll el 1 F2llfpan < CTLOZ/ox0/m

o,q 5—B.q1 =
BTOO B, 1

Letting L — +o00, we find that 1/r < (1—0)/ro+6/r1 : we have thus proven the optimality of these inequalities.
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